Основной поток энергии поступающей в биосферу представлен. Движение энергии в биосфере. Движение вещества и энергии в биосфере

Биосфера - это открытая термодинамическая система, которая получает энергию в виде лучистой энергии Солнца и тепловой энергии процессов радиоактивного распада веществ в земной коре и ядре планеты. Радиоактивная энергия, доля которой в энергетическом балансе планеты была значительной на абиотических фазах, сейчас не играет заметной роли в жизни биосферы, и основной источник энергии сегодня - это солнечное излучение. Ежегодно Земля получает от Солнца энергию, которая составляет около 10,5 * 1020 кДж. Большая часть этой энергии отражается от облаков, пыли и земной поверхности (около 34%), нагревает атмосферу, литосферу и Мировой океан, после чего рассеивается в космическом пространстве в виде инфракрасного излучения (42%), расходуется на испарение воды и образование облаков (23 %), на перемещение воздушных масс - образование ветра (около 1%). И только 0,023% солнечной энергии, попадающей на Землю, улавливается продуцентами - высшими растениями, водорослями и фототрофных бактериями - и запасается в процессе фотосинтеза в виде энергии химических связей органических соединений. За год в результате фотосинтеза образуется около 100 млрд. т органических веществ, в которых запасается не менее 1,8 * 1017 кДж энергии.

Эта связана энергия далее используется консументами и редуцентами в цепях питания, и за его счет живое вещество выполняет работу - концентрирует, трансформирует, аккумулирует и перераспределяет химические элементы в земной коре, раздробляет и агрегирует неживую вещество. Работа живого вещества сопровождается рассеянием в виде тепла почти всей запасенной в процессе фотосинтеза солнечной энергии. Лишь доли процента этой «фотосинтетической» энергии не попадают в цепи питания и консервируются в осадочных породах в виде органического вещества торфа, угля, нефти и природного газа.

Итак, в процессе работы, которую осуществляет биосфера, уловленного солнечная энергия трансформируется, то есть идет на выполнение так называемой полезной работы, и рассеивается. Эти два процесса подчиняются двум фундаментальным естественным законам - первом и втором законам термодинамики. Первый закон термодинамики часто называют законом сохранения энергии. Это означает, что энергия не может быть ни рожден, ни уничтожена, она может быть только трансформирована из одной формы в другую. Количество энергии при этом не меняется.



В экологических системах происходит много преобразований энергии: лучистая энергия Солнца благодаря фотосинтезу превращается в энергию химических связей органического вещества продуцентов, энергия, запасенная продуцентами, - на энергию, аккумулированную в органическом веществе консументов разных уровней, и т. д. Современное человеческое общество также превращает огромные количества одной энергии на другую. Второй закон термодинамики определяет направление качественных изменений энергии в процессе ее трансформации из одной формы в другую. Закон описывает соотношение полезной и бесполезной работы при переходе энергии из одной формы в другую и дает представление о качестве самой энергии.

Второй закон термодинамики, я считаю, царит среди законов Природы. И если ваша гипотеза противоречит этому закону, я ничем не могу вам помочь. (А. Эддингтон, английский астроном.

Вспомним, что во энергией понимают способность системы совершать работу. Но при любой трансформации энергии лишь часть ее расходуется на выполнение полезной работы. Остальные же безвозвратно рассеивается в виде тепла, т.е. осуществляется пустая работа, связанная с увеличением скорости беспорядочного движения частиц. Чем больший процент энергии расходуется на выполнение полезной работы и, соответственно, чем меньше процент при этом рассеивается в виде тепла, тем выше считается качество исходной энергии. Высококачественная энергия может быть без дополнительных энергетических затрат трансформирована в большее количество других видов энергии, чем низкокачественная.

Энергией низкого качества есть энергия беспорядочного броуновского движения, то есть тепловая. ее нельзя использовать для выполнения полезной работы. Количество энергии низкого качества, непригодной для совершения полезной работы, называют энтропией. Упрощенно энтропия - это мера дезорганизации, беспорядка, случайности систем и процессов.

Итак, по второму закону термодинамики, любая работа сопровождается трансформацией высококачественной энергии в энергию низшего и низкого качества - тепло - и приводит к росту энтропии.

Снизить энтропию в термодинамически закрытой системе, которая не получает энергии извне, невозможно - ведь вся качественная энергия такой системы в конце концов превращается в низкокачественную, деградирует к теплу. Однако в открытой термодинамической системе возможно противодействовать росту энтропии, используя для этого высококачественную энергию, поступающую извне, и отводя низкокачественную энергию за пределы системы.

Вселенная является закрытой системой, и в нем энтропия постоянно растет. Зато биосфера является открытой системой, которая поддерживает собственный низкий уровень энтропии, используя для этого внешний источник качественной лучистой энергии - Солнце - и рассеивая в космическое пространство низкокачественную тепловую энергию. Поэтому, кроме энтропии физической (энтропии замкнутой системы), в экологии используют понятие «энтропия экологическая» - количество необратимо рассеянной в пространстве тепловой энергии, которая, однако, компенсируется трансформируемой энергией внешнего источника - Солнца.

Живая оболочка нашей планеты (биосфера) непрерывно поглощает солнечную энергию, а также ту энергию, которая идет из недр Земли. Вся энергия передается в измененном виде от одних живых организмов к другим и поступает в окружающую среду. Эти потоки энергии находятся в постоянном состоянии «течения» и играют важную роль в создании биомассы.

На земную поверхность ежегодно падает примерно 21х1023 кДж энергии. Из этого количества на участки Земли, покрытые растениями, и водоемы с растительностью, содержащейся в них, приходится только около 40%. Учитывая потери энергии радиации в результате отражения и иных причин, энергетический выход фотосинтеза, который не превышает 2%, суммарное количество энергии, запасаемой в продуктах фотосинтеза ежегодно, может выразиться величиной, приближающейся к 2,0x1022 кДж.

Кроме образования чистой продукции, живой покров сухой части планеты применяет для дыхания солнечную энергию, попадающую в биосферу: порядка 30-40% энергии, необходимой для образования чистой продукции. Таким образом, растительность суши суммарно преобразует (на создание чистой продукции и дыхание) около 4,2х1018 кДж солнечной энергии ежегодно.

Существование и создание биомассы связаны с непрерывным поступлением энергии и веществ из окружающего пространства. Большая часть веществ земной коры проходит сквозь живые организмы и попадает в биологический круговорот веществ, который создает биосферу и определяет ее устойчивость. Жизнь в биосфере в энергетическом отношении поддерживается благодаря постоянному притоку солнечной энергии и применению ее в процессах фотосинтеза.

Поступая в молекулы живых клеток, поток энергии от Солнца преобразуется в энергию химических связей. В ходе фотосинтеза растения применяют лучистую энергию солнца для преобразования веществ с низким содержанием энергии (Н2О и СО2) в боле сложные органические соединения, где некоторая часть энергии солнца сохранена в виде химических связей. Органические вещества, полученные в результате фотосинтеза, являются источником энергии для самого растения, либо переходят в ходе поедания и последующего усвоения от одних к другим организмам.

Высвобождение энергии, заключенной в органических соединениях, также происходит в процессе брожения или дыхания. Сапрофиты (грибы, гетеротрофные бактерии, некоторые растения и животные) разлагают остатки биомассы на составные неорганические части (минерализация), способствуя вовлечению в круговорот химических элементов и соединений, что обеспечивает очередные циклы производства органического вещества.

1.Биосфе́ра (от др.-греч. βιος - жизнь и σφαῖρα - сфера, шар) - оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Биосфера - оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил по сути дела концепцию биосферы, ещё не введя даже самого термина. Термин «биосфера» был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году .

Целостное учение о биосфере создал биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определение: Биосфера - область распространения жизни на космическом теле. При том, что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах. Так, например, рассматривается возможность существования жизни в океане спутника Юпитера Европы.

Основным понятием в экологии является «экосистема» . Этот термин введен в употребление А. Тенсли в 1935 г. Под экосистемой понимают любую систему, состоящую из живых существ и среды их обитания, которые объединены в единое функциональное целое.

Основными свойствами экосистем являются: способность осуществлять круговорот веществ, противостояние внешним воздействиям, производство биологической продукции.

Обычно выделяют: микроэкосистемы (например, небольшой водоем), которые существуют, пока в них присутствуют живые организмы, способные осуществлять круговорот веществ; мезоэкосистемы (например, река); макроэкосистемы (например, океан) а также глобальную экосистему – биосферу

Биосфера как глобальная экосистема

Понятие «биосфера» в научную литературу введено в 1875 г. австрийским ученым-геологом Эдуардом Зюссом К биосфере он отнес все то пространство атмосферы, гидросферы и литосферы (твердой оболочки Земли), где встречаются живые организмы.

Владимир Иванович Вернадский использовал этот термин и создал науку с аналогичным названием. В таком случае под биосферой понимается все пространство (оболочка Земли), где существует или когда-либо существовала жизнь, т. е. где встречаются живые организмы или продукты их жизнедеятельности. В. И. Вернадский не только конкретизировал и очертил границы жизни в биосфере, но, самое главное, всесторонне раскрыл роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной средообразующей силы, чем живые организмы и продукты их жизнедеятельности. В И Вернадский вывел первостепенную преобразующую роль живых организмов и обусловливаемых ими механизмов образования и разрушения геологических структур, круговорота веществ, изменения твердой (литосферы ), водной (гидросферы ) и воздушной (атмосферы ) оболочек Земли. Часть биосферы, где живые организмы встречаютсяв настоящее время, принято называть современной биосферой, (необиосферой ), древние же биосферы относят к (палеобиосферам ). Как пример последних можно указать безжизненные концентрации органических веществ (месторождения каменных углей, нефти, горючих сланцев.), запасы других соединений, образовавшихся при участии живых организмов (известь, мел, рудные образования).

Границы биосферы. Необиосфера в атмосфере располагается примерно до озонового экрана над большей частью поверхности Земли – 20-25 км. Гидросфера почти вся, даже и самая глубокая Марианская впадина Тихого океана (11 022 м), занята жизнью. В литосферу жизнь также проникает, но на несколько метров, ограничиваясь только почвенным слоем, хотя по отдельным трещинам и пещерам она распространяется на сотни метров. В результате границы биосферы определяются присутствием живых организмов или «следами» их жизнедеятельности. Экосистемы являются основными звеньями биосферы. На уровне экосистем основные свойства и закономерности функционирования организмов можно рассмотреть более детально и глубоко, чем это сделано на примере биосферы.

Через сохранение элементарных экосистем и решается главная проблема современности – предотвращение или нейтрализация неблагоприятных явлений глобального кризиса, сохранение биосферы в целом.

2. Живое вещество - вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности.

Это понятие не следует путать с понятием «биомасса», которое является частью биогенного вещества.

Термин введён В. И. Вернадским

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы, литосферы и гидросферы. В условиях, не благоприятных для существования, живое вещество переходит в состояние анабиоза.

Специфика живого вещества заключается в следующем:

    Живое вещество биосферы характеризуется огромной свободной энергией. В неорганическом мире по количеству свободной энергии с живым веществом могут быть сопоставлены только недолговечные незастывшие лавовые потоки.

    Резкое отличие между живым и неживым веществом биосферы наблюдается в скорости протекания химических реакций: в живом веществе реакции идут в тысячи и миллионы раз быстрее.

    Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).

    Произвольное движение живого вещества, в значительной степени саморегулируемое. В. И. Вернадский выделял две специфические формы движения живого вещества: а) пассивную, которая создается размножением и присуща как животным, так и растительным организмам; б) активную, которая осуществляется за счет направленного перемещения организмов (она характерна для животных и в меньшей степени для растений). Живому веществу также присуще стремление заполнить собой все возможное пространство.

    Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Кроме того, в отличие от неживого абиогенного вещества живое вещество не бывает представлено исключительно жидкой или газовой фазой. Тела организмов построены во всех трех фазовых состояниях.

    Живое вещество представлено в биосфере в виде дисперсных тел – индивидуальных организмов. Причем, будучи дисперсным, живое вещество никогда не находится на Земле в морфологически чистой форме – в виде популяций организмов одного вида: оно всегда представлено биоценозами.

    Живое вещество существует в форме непрерывного чередования поколений, благодаря чему современное живое вещество генетически связано с живым веществом прошлых эпох. При этом характерным для живого вещества является наличие эволюционного процесса, т. е. воспроизводство живого вещества происходит не по типу абсолютного копирования предыдущих поколений, а путем морфологических и биохимических изменений.

Значение живого вещества

Работа живого вещества в биосфере достаточно многообразна. По Вернадскому, работа живого вещества в биосфере может проявляться в двух основных формах:

а) химической (биохимической) – I род геологической деятельности; б) механической – II род транспортной деятельности.

Биогенная миграция атомов I рода проявляется в постоянном обмене вещества между организмами и окружающей средой в процессе построения тела организмов, переваривания пищи. Биогенная миграция атомов II рода заключается в перемещении вещества организмами в ходе его жизнедеятельности (при строительстве нор, гнезд, при заглублении организмов в грунт), перемещении самого живого вещества, а также пропускание неорганических веществ через желудочный тракт грунтоедов, илоедов, фильтраторов.

Для понимания той работы, которую совершает живое вещество в биосфере очень важными являются три основных положения, которые В. И. Вернадский назвал биогеохимическими принципами:

    Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению.

    Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, усиливающем биогенную миграцию атомов.

    Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете лучистой энергией Солнца.

Выделяют пять основных функций живого вещества:

    Энергетическая . Заключается в поглощении солнечной энергии при фотосинтезе, а химической энергии – путем разложения энергонасыщенных веществ и передаче энергии по пищевой цепи разнородного живого вещества.

    Концентрационная . Избирательное накопление в ходе жизнедеятельности определенных видов вещества. Выделяют два типа концентраций химических элементов живым веществом: а) массовое повышение концентраций элементов в среде, насыщенной этими элементами, например, серы и железа много в живом веществе в районах вулканизма; б) специфическую концентрацию того или иного элемента вне зависимости от среды.

    Деструктивная . Заключается в минерализации необиогенного органического вещества, разложении неживого неорганического вещества, вовлечении образовавшихся веществ в биологический круговорот.

    Средообразующая . Преобразование физико-химических параметров среды (главным образом за счет необиогенного вещества).

    Транспортная . Пищевые взаимодействия живого вещества приводят к перемещению огромных масс химических элементов и веществ против сил тяжести и в горизонтальном направле нии.

Живое вещество охватывает и перестраивает все химические процессы биосферы. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Воздавая должное памяти великого основоположника учения о биосфере, следующее обобщение А. И. Перельман предложил назвать «законом Вернадского»:

3. Энергетика биосферы

В энергетических процессах в биосфере решающая роль (99%) принадлежит радиации Солнца, которая определяет тепловой баланс и термический режим биосферы Земли. Из всего количества энергии, 5,42 · 10 4 Дж, получаемой Землей от Солнца, 33% отражается облаками и поверхностью суши, а также пылью в верхних слоях атмосферы. Эта часть составляет альбедо Земли, 67% энергии поглощается атмосферой и земной поверхностью (континентами и Мировым океаном) и после ряда превращений уходит в космическое пространство (рис. 5.2).

В атмосфере нагревание происходит снизу, что приводит к образованию мощных конвективных потоков и общей циркуляции воздушных масс. Океанические течения, движимые преимущественно ветром, перераспределяют полученную солнечную энергию в горизонтальном направлении, что влияет на снабжение атмосферы теплом. Мировой океан и атмосфера представляют собой единую тепловую систему.

За счет излучения и конвекции поддерживается весь энергетический баланс нашей планеты. Круговорот воды в биосфере также определяется поступлением солнечной энергии.

Весьма незначительная часть общего потока солнечной энергии поглощается зелеными растениями в процессе осуществления реакции фотосинтеза. Эта энергия составляет 10 22 Дж в год (приблизительно 0,2% от всей суммы солнечной радиации). Фотосинтез - это мощный естественный процесс, вовлекающий в круговорот огромные массы вещества биосферы и определяющий большое количество кислорода в атмосфере. Фотосинтез представляет собой химическую реакцию, протекающую за счет солнечной энергии при участии хлорофилла зеленых растений: n СО 2 + n Н 2 О = Сn Н 2 n О 2 + n О 2 . Круговорот углерода в биосфере изображен на рис. 5.3.

Таким образом, за счет двуокиси углерода и воды синтезируется органическое вещество и выделяется свободный кислород. За немногим исключением фотосинтез происходит на всей поверхности Земли и создает огромный геохимический эффект, который может быть охарактеризован количеством всей массы углерода, ежегодно вовлекаемого в построение органического живого вещества биосферы. Ежегодно используется и поглощается CO 2: на суше 253-10 9 т, в океане - 88-10 9 т, а всего - 341 · 10 9 т. С использованием 135 · 10 12 т воды создается 232 · 10 9 т органических веществ С n Н 2 n О n и 248 · 10 9 т кислорода уходит в атмосферу.

связи с фотосинтезом в биосфере в круговорот вовлекаются 1 млрд т азота, 260 млн т фосфора и 200 млн т серы.

В течение 6 - 7 лет поглощается вся углекислота атмосферы, за 3000-4000 лет обновляется весь кислород атмосферы, а в течение 10 млн лет фотосинтез перерабатывает массу воды, равную всей гидросфере. Если учесть, что биосфера существует на Земле не менее 3,8 - 4 млрд лет (а Земля примерно - 4,5 млрд лет), то можно сказать, что воды Мирового океана прошли через биогенный цикл, связанный с фотосинтезом, не менее 1 млн раз. Все эти величины отражают огромную важность фотосинтеза в истории Земли.

Заметим здесь, что при гибели организма происходит обратный процесс - разложение органического вещества путем окисления, гниения и т.д. с образованием конечных продуктов разложения. Этот процесс в биосфере Земли приводит к тому, что количество биомассы живого вещества приобретает тенденцию к определенному постоянству. Количество биомассы примерно в 10 раз превышает ежегодно вырабатываемое в процессе фотосинтеза количество органического вещества (0,232 · 10 12 т). Общая масса вещества, прошедшего биосферу, в 12 раз превышает массу Земли. Так работает эта "живая фабрика".

Биосфера - открытая система. Ее существование невозможно без поступления энергии извне. Основная доля приходится на энергию Солнца. В отличие от количества солнечной энергии, количество атомов вещества на Земле ограничено. Круговорот веществ обеспечивает неисчерпаемость отдельных атомов химических элементов. При отсутствии круговорота, например, за короткое время был бы исчерпан основной «строительный материал» живого - углерод.

Биосфера Земли характеризуется определенным образом сложившимся круговоротом веществ и потоком энергии. Круговорот веществ - многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном потоке солнечной энергии.

В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.

Геологический круговорот - круговорот веществ, движущей силой которого являются экзогенные и эндогенные геологические процессы. Геологический круговорот веществ осуществляется без участия живых организмов.

Биологический круговорот - круговорот веществ, движущей силой которого является деятельность живых организмов. С появлением человека возник антропогенный круговорот, или обмен веществ.

Антропогенный круговорот (обмен) - круговорот (обмен) веществ, движущей силой которого является деятельность человека. В нем можно выделить две составляющие: биологическую , связанную с функционированием человека как живого организма, и техническую , связанную с хозяйственной деятельностью людей (техногенный круговорот (обмен).

В отличие от геологического и биологического круговоротов веществ, антропогенный круговорот веществ в большинстве случаев является незамкнутым. Поэтому часто говорят не об антропогенном круговороте, а об антропогенном обмене веществ. Незамкнутость антропогенного круговорота веществ приводит к истощению природных ресурсов и загрязнению природной среды. Именно они и являются основной причиной всех экологических проблем человечества.

Рассмотрим круговороты наиболее значимых для живых организмов веществ и элементов (рис. 27-30).

Рис. 27.



Рис. 29.


Круговорот воды между сушей и океаном через атмосферу относится к большому геологическому круговороту. Вода испаряется с поверхности Мирового океана и либо переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока, либо выпадает в виде осадков на поверхность океана. В круговороте воды на Земле ежегодно участвует более 500 тыс. км 3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле весь запас воды на Земле распадается и восстанавливается за 2 млн лет.

Круговорот углерода. Продуценты улавливают углекислый газ из атмосферы и переводят его в органические вещества, консументы поглощают углерод в виде органических веществ с телами продуцентов и консументов низших порядков, редуценты минерализуют органические вещества и возвращают углерод в атмосферу в виде углекислого газа. В Мировом океане круговорот углерода усложнен тем, что часть углерода, содержащегося в мертвых организмах, опускается на дно и накапливается в осадочных породах. Эта часть углерода выключается из биологического круговорота и поступает в геологический круговорот веществ.

Главным резервуаром биологически связанного углерода являются леса, они содержат до 500 млрд т этого элемента, что составляет 2 /з его запаса в атмосфере. Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания С0 2 в атмосфере и развитию парникового эффекта.

Скорость круговорота С0 2 , то есть время, за которое весь углекислый газ атмосферы проходит через живое вещество, составляет около 300 лет.

Круговорот кислорода. Главным образом круговорот кислорода происходит между атмосферой и живыми организмами. В основном свободный кислород (0 2) поступает в атмосферу в результате фотосинтеза зеленых растений, а потребляется в процессе дыхания животными, растениями и микроорганизмами и при минерализации органических остатков. Незначительное количество кислорода образуется из воды и озона под воздействием ультрафиолетовой радиации. Большое количество кислорода расходуется на окислительные процессы в земной коре, при извержении вулканов и т.д. Основная доля кислорода продуцируется растениями суши - почти 3 / 4 , остальная часть - фотосинтезирующими организмами Мирового океана. Скорость круговорота - около 2 тыс. лет.

Установлено, что на промышленные и бытовые нужды ежегодно расходуется 23% кислорода, который образуется в процессе фотосинтеза, и эта цифра постоянно возрастает.

Круговорот азота. Запас азота (N2) в атмосфере огромен (78% от ее объема). Однако растения поглощать свободный азот не могут, а только в связанной форме, в основном в виде МН 4 + или N03". Свободный азот из атмосферы связывают азотфиксирующие бактерии и переводят его в доступные растениям формы. В растениях азот закрепляется в органическом веществе (в белках, нуклеиновых кислотах и пр.) и передается по цепям питания. После отмирания живых организмов редуценты минерализуют органические вещества и превращают их в аммонийные соединения, нитраты, нитриты, а также в свободный азот, который возвращается в атмосферу.

Нитраты и нитриты хорошо растворимы в воде и могут мигрировать в подземные воды и растения и передаваться по пищевым цепям. Если их количество излишне велико, что часто наблюдается при неправильном применении азотных удобрений, то происходит загрязнение вод и продуктов питания, что вызывает заболевания человека.

Поток энергии в биосфере. Живая оболочка планеты непрерывно поглощает не только энергию Солнца, но и идущую из недр Земли; энергия трансформируется и передается от одних организмов к другим и излучается в окружающую среду. Следует четко представлять себе, что является источниками энергии в биосфере, куда текут энергетические потоки и какова их роль в создании биомассы.

Уже отмечалось, что единственным первичным источником внешней энергии на Земле является световое и тепловое излучение Солнцаj (см. гл. 2). Ежегодно на земную поверхность падает около 21 1023 кДж, из этой величины на участки Земли, покрытые растениями, а также на водоемы, с содержащейся в них растительностью, приходится только около 40%. С учетом потери энергии радиации вследствие отражения и других причин, а также энергетического выхода фотосинтеза, не превышающего 2%, общее количество энергии, запасаемой ежегодно в продуктах фотосинтеза, выразится величиной порядка 20 1022 кДж. Кроме создания чистой продукции, живой покров суши использует захваченную им энергию Солнца для процесса дыхания. Эти энергетические затраты составляют около 30-40% энергии, расходуемой на создание чистой продукции. Таким образом, растительность суши в год преобразует суммарно (на дыхание и создание чистой продукции) около 4,2 1018 кДж солнечной энергии.

Создание и существование биомассы неразрывно связаны с поступлением энергии и веществ из окружающей среды. Большинство веществ земной коры проходит через живые организмы и вовлекается в биологический круговорот веществ, создавший биосферу и определяющий ее устойчивость. В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Поток солнечной энергии, воспринимаясь молекулами живых клеток, преобразуется в энергию химических связей. В процессе фотосинтеза растения используют лучистую энергию солнечного света для превращения веществ с низким содержанием энергии (С02 и Н2О) в более сложные органические соединения, где часть солнечной энергии запасена в форме химических связей.

Органические вещества, образованные в процессе фотосинтеза, служат источником энергии для самого растения или переходят в процессе поедания и последующего усвоения от одних организмов к другим: от растений к растительноядным животным, от них - к плотоядным и т.д. Высвобождение заключенной в органических соединениях энергии происходит также в процессе дыхания или брожения, разрушение использованных или отмерших остатков биомассы осуществляют разнообразные организмы, относящиеся к числу сапрофитов (гетеротрофные бактерии, грибы, некоторые животные и растения). Они разлагают остатки биомассы на неорганические составные части (минерализация), способствуя вовлечению в биологический круговорот соединений и химических элементов, что обеспечивает очередные циклы продуцирования органического вещества. Укажем, что содержащаяся в пище энергия не совершает круговорота, а постепенно превращается в тепловую энергию. В итоге поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения. Поэтому биосфере требуется постоянный приток энергии извне. Эту важнейшую функцию и выполняет Солнце, обеспечивающее в течение многих миллиардов лет постоянный поток энергии через биосферу. При этом к Земле приходит коротковолновое излучение (свет), а уходит от нее длинноволновое тепловое излучение. Существенно, что баланс этих энергий не соблюдается: планета излучает в Космос несколько меньше энергии, нежели получает от Солнца. Эту разность (доли процента) и усваивает биосфера, постепенно, но постоянно накапливая энергию. Ее оказалось достаточно для того, чтобы однажды на планете появилась жизнь, возникла биосфера, чтобы и ныне поддерживать все грандиозные процессы развития планеты.


Продуктивность биосферы. Современная биомасса Земли составляет примерно в 1,841 1012 т (в пересчете на сухое вещество). При этом на биомассу суши приходится около 1,837 1012 т, Мирового океана - 3,9 109 т. Это связано с меньшей эффективностью фотосинтеза, так как использование лучистой энергии Солнца на площади океана равно 0,04%, на суше - 0,1%. Зеленые растения в биомассе суши составляют 99%, животные и микроорганизмы - 1%. Биомасса на суше распределена неравномерно и возрастает от полюсов к экватору, так же возрастает видовое разнообразие.

Вклад разных континентов в обшую первичную продукцию суши примерно следующий (Н.М. Чернова и др., 1995 г.): Европа - 6, Азия - 28, Африка - 22, Северная Америка - 13, Южная Америка - 26, Австралия с островами Океании - 5%. Если же сравнить продуктивность растений в расчете на 1 га, то она составляет (в процентах от средней по всем континентам) в Европе - 89, в Азии - 103, в Африке - 108, в Северной Америке - 86, в Южной Америке - 220, в Австралии - 90. При этом продуктивность различных экологических систем различна, она зависит от ряда климатических факторов, в первую очередь, от обеспеченности теплом и влагой. Наиболее продуктивны экосистемы тропических лесов, затем следуют обрабатываемые земли, степи и луга, пустыни, полярные зоны.

Укажем, что биомасса Мирового океана почти в 1000 раз меньше, чем суши, хотя его поверхность занимает 72,2% всей поверхности Земли. Однако удельная продуктивность океанических биоценозов настолько высока, что ничтожная по сравнению с сушей фитомасса океанов создает ежегодно чистую продукцию, сопоставимую с чистой продукцией на суше. Так, в океанах ежегодно образуется 5,51 1010 т растительной массы, что составляет примерно третью часть обшей биомассы продукции планеты.

Рост и размножение организмов, происходящие в биосфере, обеспечивают биогенную миграцию атомов, которая обусловила в процессе эволюции создание современной природной системы. За сотни миллионов лет растения поглотили огромное количество диоксида углерода и одновременно обогатили атмосферу кислородом. Живые организмы глубоко воздействуют на природные свойства биосферы и всей планеты. Скелеты беспозвоночных образовали такие осадочные породы, как известняк и мел; каменный уголь и нефть образовались из растительных остатков. Биогенное происхождение имеет и почва, которая представляет собой продукт жизнедеятельности микроорганизмов, растений и животных в их взаимодействии с неорганическими компонентами природы. Важно подчеркнуть, что возникновение в процессе эволюции более сложно устроенных, но менее зависимых от изменений среды организмов, а также развитие относительно устойчивых экосистем привело к увеличению скорости движения энергии и веществ в сформировавшихся биогеоценозах.

Приведем данные, которые ярко свидетельствуют о «напоре жизни». Суммарная масса живого вещества, которое было на Земле, хотя бы в течение 1 млрд лет, уже превышает массу земной коры. Действительно, биомасса Земли составляет 1,84 1012 т, т.е. около 0,00001% земной коры (2 1019 т), ежегодная продукция живого вещества близка к 1,7 1011 т. Полагая, что последний миллиард лет эта продукция была близка к современной, можно рассчитать ее суммарное количество: 1,710 109 = 1,7 1020 т, т.е. почти на порядок больше массы земной коры. Согласно Н.М. Черновой, если бы можно было собрать всю биомассу, произведенную на Земле за последние 600 млн лет, то она покрыла бы Землю слоем в сотни километров.

По мнению В.И. Вернадского, вышеуказанная «пленка жизни» длительное время является главной геологической силой, придающей современный облик трем оболочкам Земли: литосфере, гидросфере и атмосфере. Развитие и характер этих оболочек определяется уже не астрономическими, а биогенными причинами. Исключение составляют лишь проявления вулканической деятельности, которые порождены глубинными геофизическими слоями Земли.